Electric and Thermal Energy Consumption in Commercial Swine Facilities

KIRSTEN SHARPE

UNIVERSITY OF MINNESOTA
WEST CENTRAL RESEARCH AND OUTREACH CENTER
University of MN’s Research and Outreach Centers

• University of Minnesota College of Food, Agriculture, and Natural Resource Sciences (CFANS)

• 10 ROCs in MN
 • Agronomy, animal science, climate, forestry, horticulture, invasive species, natural resources, plant health, renewable energy, soils, water

• RESEARCH for the public
West Central Research and Outreach Center (WCROC)

• Applied research in:
 • Agronomy
 • Animal science
 • Horticulture
 • Organics
 • Renewable energy
WCROC and Renewable Energy

- Consumers demanding products with less environmental impacts

- Increase utilization of renewable energy in production agriculture and support its further development

- Research/demonstration of large/small scale systems
 - Are these systems feasible, applicable, and economical for producers?

- Energy conservation, optimization
“Greening of Agriculture” Initiative

• Overall goal to reduce fossil-fuel consumption in ag production systems

• Research and results for producers to use as a guide

• Three focus areas:
 • Crops
 • Dairy
 • Swine
Meeting our goals

• Crops:
 • Cover crops
 • Organic
 • Livestock

• Dairy - net-zero goal:
 • Scroll compressor, plate cooler, VFD
 • Solar thermal
 • 50 kW PV
 • 2, 10 kW wind turbines (one with 4 kW PV)
 • 2 Polaris electric UTVs
 • Electric Chevy Bolt
 • Fast charger
 • More RE installations this summer
Greening of Ag - Swine

• At the WCROC:
 • Renewable energy generation
 • LED retrofit

• In the industry:
 • Commercial barn energy monitoring
Solar Cooling of Sows

• Heat stress on sows
• 20 kW array
 • Powers chiller in farrowing barn
• Cool water (70°F) circulated to Nooyen cooling pads
• Cool water (55°F) supplied for drinking
 • Evidence lower water temps can increase feed intake
• Preliminary data shows reduced body temperatures and lower breathing rate
Commercial swine barn energy monitoring

• How much electric and thermal energy goes into producing one pig?

• Where and how is energy being used within each phase of production?
 • Breed-to-wean, nursery, finishing

• Each phase has different environmental requirements
 • Electricity uses
 • Amounts of fuel

• First study to monitor specific electrical loads
Commercial swine barn energy monitoring

• Six barns within an hour of Morris, MN

• Production barns representative of Midwest pork production systems:
 • Two breed-to-wean barns (BWA and BWB)
 • Two nurseries (NBA and NBB)
 • Two finishers (FBA and FBB)

• Baseline data collection and analysis
 • Electricity
 • Fuel (propane)
 • Pig production
Data collection

• Electricity usage of specific loads
 • Ex. pit fans, heat lamps, pressure washers, lights, etc.
• HOBO Data loggers and sensors
• Propane tank fills collected from producer
Breed-to-Wean Results

• Breed-to-Wean Barn A
 • ~2,500 sows
 • Average 58,420 weaned pigs produced per year
 • South Gestation unit curtain-sided
 • North Gestation, farrowing rooms power-ventilated

• Electrical use (2015-2016)
 • Average use 62,000 kWh/month
 • Average of 11.36 kWh per weaned pig

• Breed-to-Wean Barn B
 • ~3,300 sows
 • Average 87,670 weaned pigs produced per year
 • Gestation unit cross-ventilated
 • Farrowing rooms power-ventilated

• Electrical use (2015-2016)
 • Average use 97,700 kWh/month
 • Average of 11.91 kWh per weaned pig
Breed-to-Wean Results

- **BWA**: 384,755 kWh/yr
 - Heat Lamps: 50%
 - Ventilation: 20%
 - Lights: 10%
 - Pressure Washers: 10%
 - Heater Fans: 5%
 - Feed System: 5%
 - Well: 2%
 - Manure System: 1%
 - Not Measured: 2%

- **BWB**: 637,002 kWh/yr
 - Heat Lamps: 60%
 - Ventilation: 20%
 - Lights: 10%
 - Pressure Washers: 5%
 - Heater Fans: 5%
 - Feed System: 2%
 - Well: 1%
 - Manure System: 1%
 - Not Measured: 1%
Breed-to-Wean Barn B Daily Electricity Use December 2014-December 2015
Nursery Results

• Nursery Barn A
 • ~3,000 head
 • Average 19,100 feeder pigs produced per year
 • Nursery rooms power-ventilated

• Electrical use (2015-2016)
 • Average use 3,900 kWh/month
 • Average of 2.38 kWh per feeder pig

• Nursery Barn B
 • ~12,000 head
 • Average 71,650 feeder pigs produced per year
 • Nursery rooms power-ventilated

• Electrical use (2015-2016)
 • Average use 12,650 kWh/month
 • Average of 2.10 kWh per feeder pig
Nursery Results

45,391 kWh/yr

150,598 kWh/yr

Percent of Total Electricity

- **NBA**
 - Ventilation: 50%
 - Not Measured: 30%
 - Heater Fans: 10%
 - Lights: 5%
 - Feed System: 5%
 - Well: 5%
 - Pressure Washer: 5%
 - Manure System: 5%

- **NBB**
 - Ventilation: 50%
 - Not Measured: 30%
 - Heater Fans: 10%
 - Lights: 5%
 - Feed System: 5%
 - Well: 5%
 - Pressure Washer: 5%
 - Manure System: 5%
Finishing Results

• Finishing Barn A
 • ~2,400 head
 • Average 6,300 market hogs produced per year
 • Rooms are tunnel-ventilated

• Electrical use (2015-2016)
 • Average use 7,300 kWh/month
 • Average of 14.40 kWh per finished pig

• Finishing Barn B
 • ~1,060 head
 • Average 2,800 market hogs produced per year
 • Rooms are curtain-sided

• Electrical use (2015-2016)
 • Average use 900 kWh/month
 • Average of 4.12 kWh per finished pig
Finishing Results

91,140 kWh/yr
11,591 kWh/yr

Percent of Total Electricity

- Ventilation
- Well
- Not Measured
- Feed System
- Lights
- Heater Fans
- Pressure Washer
- Curtain

FBA
FBB
Total annual electrical and thermal energy use

*Total MJ of energy used annually by each barn.
Conclusions

• Results comparable to other industry measures:
 • Unpublished data from a system with 70,000 sows:
 • Avg across all sows 9.7 kWh/weaned pig
 • Barns within system ranged from 5-12 kWh/pig
 • Nursery (Brumm, 2015):
 • ~1.8 kWh per feeder pig
 • ~0.31 gal lp per feeder pig
 • Unpublished data from a tunnel-ventilated finisher:
 • 11.2 kWh per market hog

<table>
<thead>
<tr>
<th>Barn</th>
<th>kWh/pig</th>
<th>Gal. lp/pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWA</td>
<td>11.36</td>
<td>0.34</td>
</tr>
<tr>
<td>BWB</td>
<td>11.91</td>
<td>0.31</td>
</tr>
<tr>
<td>NBA</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>NBB</td>
<td>2.1</td>
<td>0.41</td>
</tr>
<tr>
<td>FBA</td>
<td>14.4</td>
<td>0.34</td>
</tr>
<tr>
<td>FBB</td>
<td>4.12</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Summary

• Consumers and market chains will likely continue demanding:
 • Reduced carbon footprint
 • More environmental sustainability

• Approaches for producers to meet consumer demands

• Producers have the tools to reduce fossil fuel use on the farm:
 • More efficient piglet heating systems
 • Improved ventilation systems/ better maintenance!
 • Reduced nocturnal temperatures for nursery and finishing? (Johnston et al)
 • Higher efficiency lighting
 • Renewables on the farm
Acknowledgements

• Participating producers

• This project was funded by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR)
Questions?