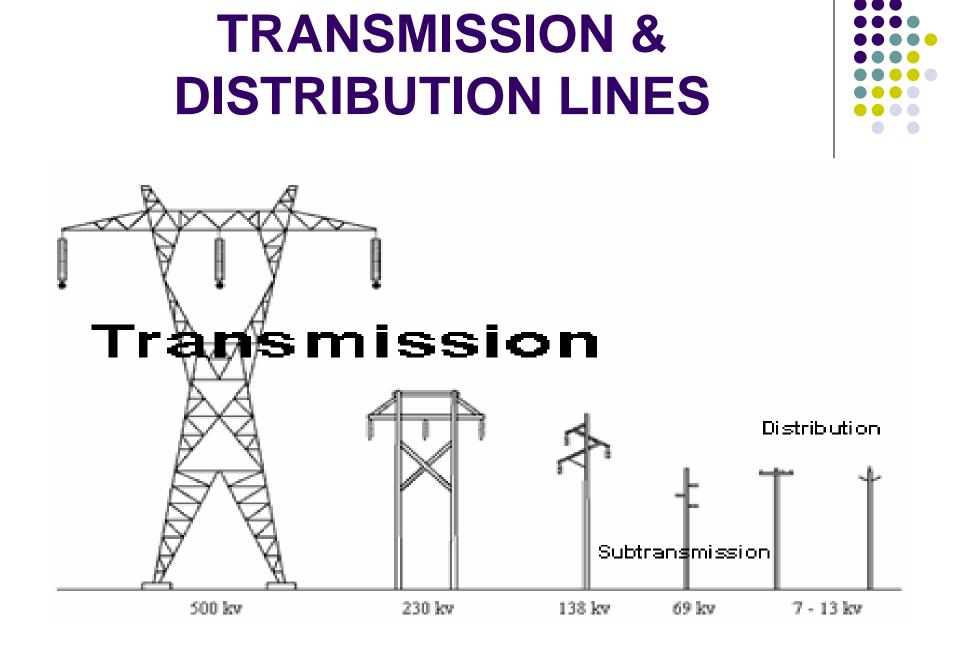
Using a Dispersed Strategy in Your Region

By Mike Michaud Matrix Energy Solutions

What We Will Cover



- Definitions
- CBED Study, What did we learn?
- Using Transmission Maps & Tables
- Conservation & Renewables, Co-Development Strategies

Transmission Planning Zones

TRANSMISSION LINE CHARACTERISTICS

- Functions as a network to connect generation to load and support wholesale power transfers. (See FERC Seven Factor test).
- Interstate power transfer capability.
- 115 kV and above Federally regulated (FERC).
- Lines below 115 kV can be "dual use" "sub transmission" facilities that serve retail load and the wholesale power market.

DISTRIBUTION LINE CHARACTERISTICS

- Voltages are < 100kV, typically at or below 34.5 kV.
- Functions primarily to serve retail customer load.
- Traditionally, power flows into the line but not out.
- State regulated system.

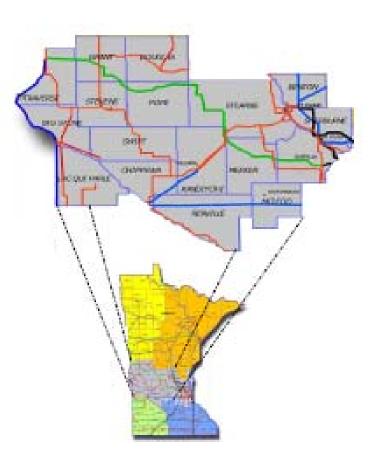
SUBSTATIONS

- Changes voltage levels and provides switching functions.
- Can be the point of transfer from transmission to distribution system.
- Transformers define power flow capability.
- Can be "on ramps" to feed power into the high voltage system.

DISTRIBUTED GENERATION

- Generation sited at or near load, "behind the meter."
- Typically connected to the distribution system.
- Differing ownership structures possible.
- May or may not feed excess power to grid.
- State definition now limits to 10 MW max.

DISTRIBUTED RESOURCES


 Includes distributed generation and "demand side" strategies such as conservation, efficiency, and load management.

DISPERSED GENERATION

- "Stand alone" generators not at existing retail customer sites.
- 100 % of output injected into the grid.
- No size limits, current DOC study looking at 10-40 MW sizes.
- Can be connected to either distribution or transmission lines.

WEST CENTRAL CBED STUDY WHAT DID WE LEARN?

WHAT THEY DID

- Modeled Dispersed Generation at all Substations that connect at the high voltage side to 115 kV system in 2009.
- Created 57 new generator locations ranging in size from 1 MW to 370 MW.
- Approximately 3500 MW total.

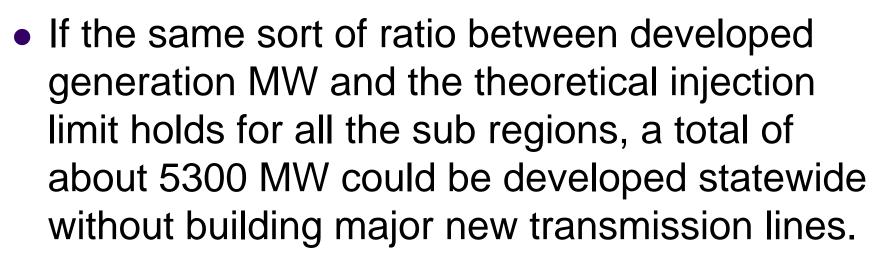
WHAT THEY DID

- Focused on analyzing thermal line loading and voltage levels for 800 MW and 1400 MW of Dispersed Generation at 21 locations.
- Used CBED Energy to reduce Minnesota gas peaking plants output.
- Analyzed transmission system constraints and established costs for mitigation.

STUDY RESULTS

- Could develop 800 MW of Dispersed Generation for \$49 Million of constraint mitigation.
- Could develop 1400 MW of Dispersed generation for \$ 97 Million in constraint mitigation.
- No major new power lines were needed.

DISPERSED GENERATION, A NEW PARADIGM FOR RESOURCE DEVELOPMENT?


- In the West Central Zone CBED Study 1400 MW out of a possible 3500 MW was modeled without adding new major power lines.
- In the Southwest Zone, historically about 400 MW of wind out of 1182 MW theoretically possible was developed before new major power lines were needed.
- Does this rule of thumb hold true for the entire state?

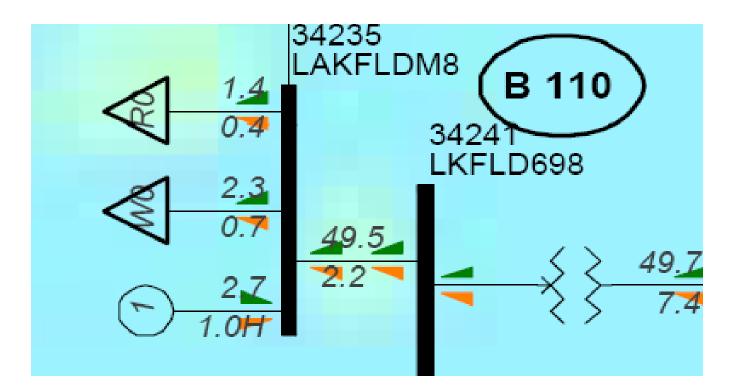
STATEWIDE INJECTION POTENTIAL

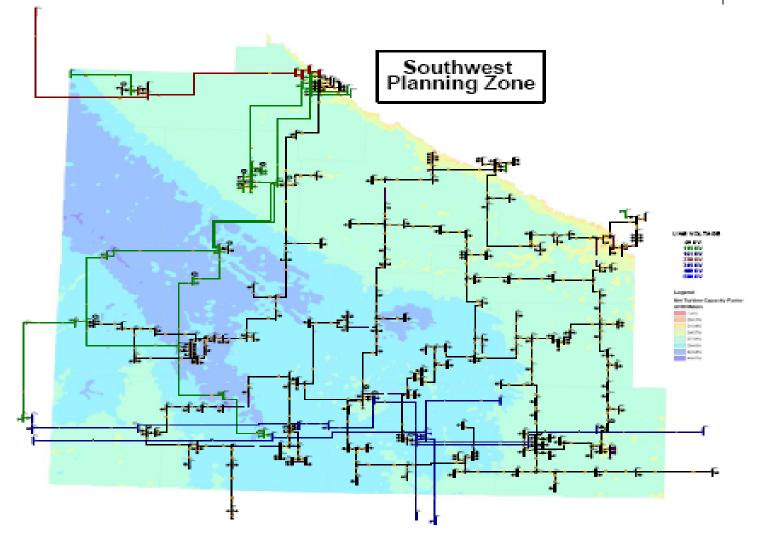
WEST CENTRAL	3585 MW
ZONE	
SOUTHWEST	1182 MW
ZONE	
SOUTHEAST	4000 MW
ZONE	
NORTHWEST	2602 MW
ZONE	
NORTHEAST	2383 MW
ZONE	
STATEWIDE	13752 MW
TOTAL	

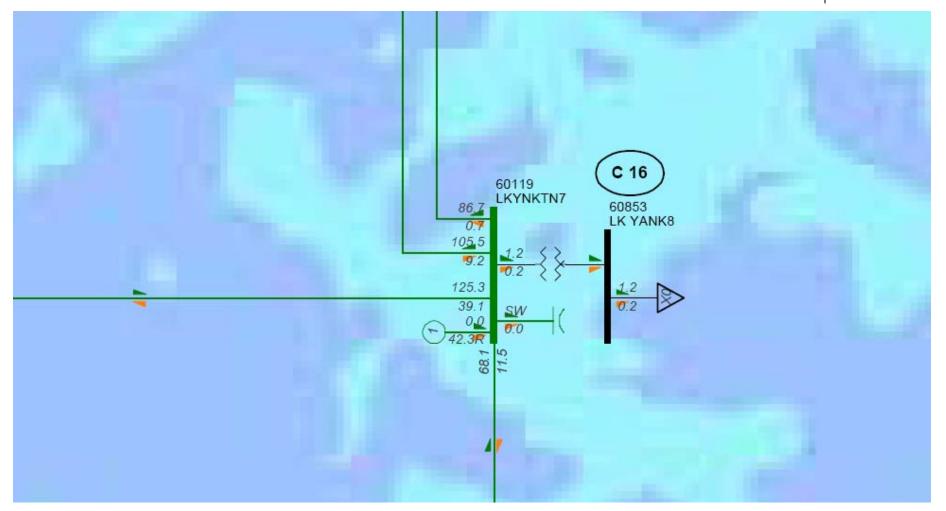
A NEW PARADIGM FOR RESOURCE DEVELOPMENT?

• Only further study will tell the tale.

NEW TOOLS DEVELOPED FROM THE STUDY

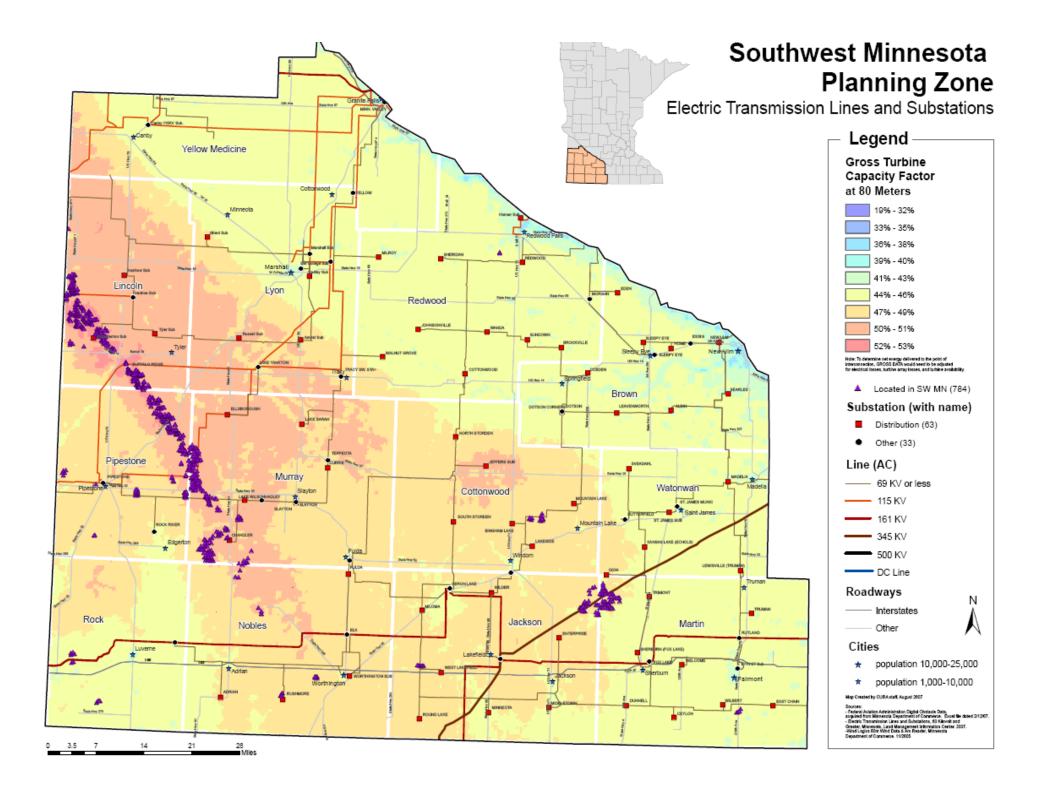

- Methodology for calculating theoretical injection capacity limit for a substation
- Maps showing wind resource, substation locations, and transmission lines for all five rural transmission planning zones.
- Data tables of substation injection potentials for all five rural transmission planning zones.


THEORETICAL INJECTION POTENTIAL

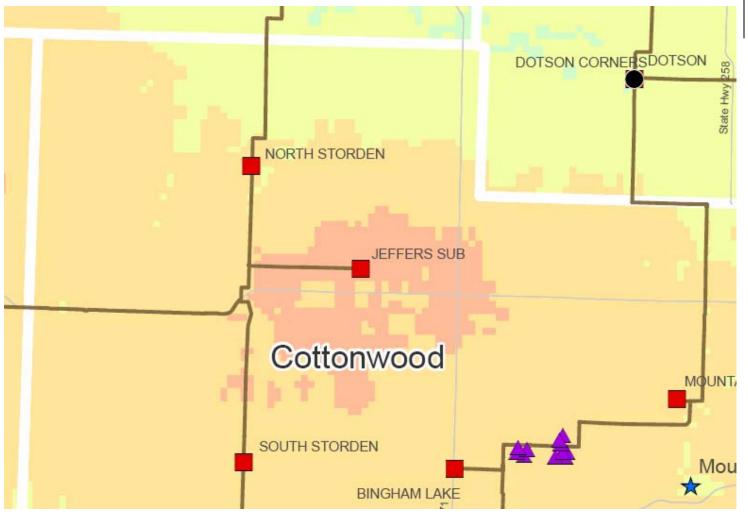

Injection MW = (Peak Load x 70%)+Transformer MVA

Sub Region Transmission & Wind Maps

SOUTHWEST MAP DETAIL


SUBSTATION DATA TABLES

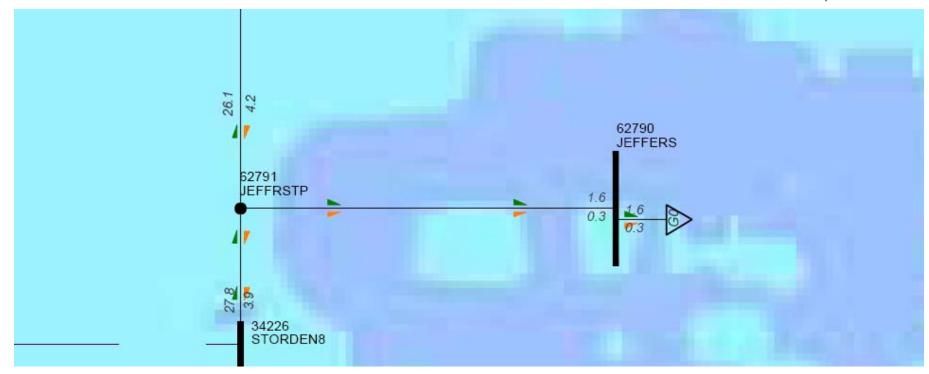
	A	_	Dutheast Iable Ger Available Generati Each load is liste Al	ne ion Ca	rati	on at indic		apa ^{Is.}		_				
	A 729 MVA load on bus + <u>MVA rating of transformer</u> (not in model: 70% of load if unknown) B 3271 MVA transformer loading * 70% + MVA rating of transformer (subsystem in model) C 0 MVA transformer loading * 70% + MVA rating of transformer (subsystem not in model) total: 4000 Ioad on bus (type A) transformer loading (type B or C)													
Bus# Bus Name	type	AGC	Load	мw	MVAr					MVA		rating	total	notes
34306 'ADAMS 8'	В	107	34306 'ADAMS 8' 68911 'VNDMYD8 ' 68910 'LITTLE C' 69078 'ROSE CRE' 34312 'STWRTVL8' 34315 'CHATFLD8' 34314 'SPRVALL8' 61940 'SPRING V' 68936 'LONDON ' 68936 'LONDON ' 68924 'CARPENTE' 69122 'TAOPI '	4 1 2 6 3 5 2 2 2	0 0 0 1 1 1 0 1 0 total:	4 2 3 6 3 5 5 2 2 2 35	3 1 2 4 2 3 4 1 2 2 25	7 3 5 10 5 8 9 3 4 4 60		47 0 0 0 0 0 0 0 0	33 0 0 0 0 0 0 0 0	75 0 0 0 0 0 0 0 0	107 0 0 0 0 0 0 0	



USING NEW MAPS & TABLES

LIKELY SPOT?

LOOK UP THEORETICAL INJECTION



34225 'HERONLK8'	В	150	34225 'HERONLK8'	2	0	2	1	4	54	38	112	150
			62355 'MILOMA '	1	0	1	1	2	0	0	0	0
			62370 'W LAKFLD'	2	0	2	1	3	0	0	0	0
			62369 'ROUND LK'	3	1	3	2	6	0	0	0	0
			62357 'MINNEOTA'	1	0	1	1	2	0	0	0	0
			34221 'DOVRAY 8'	0	0	0	0	1	0	0	0	0
			34222 'WESTBKM8'	2	1	2	1	4	0	0	0	0
			34224 'WESTBRK8'	2	1	2	1	4	0	0	0	0
			62801 'S STORDN'	2	0	2	1	3	0	0	0	0
			34226 'STORDEN8'	1	0	1	1	2	0	0	0	0
			62790 'JEFFERS '	2	0	2	1	3	0	0	0	0

-

LOOK UP LINE LOADING

CONSERVATION & RENEWABLES

"A PENNY SAVED IS A PENNY EARNED"

DYNAMIC DUALITY TURNING OFF A LIGHT

OR

SUPPLYING THE ENERGY FOR THE LIGHT LOCALLY

LOOKS THE SAME

TO A SUBSTATION TRANSFORMER OR A TRANSMISSION LINE

Timing and Aggregation

- Community involvement in supply and demand side resources can add economic value through aggregation and active control of the timing of the use of those resources.
- When organized at the substation level the value added can extend to the utility company, in terms of ability to manage loads on the substation.
- Microgrids with Internet communications create new possibilities for dispersed community projects.

SYSTEM WIDE BENEFITS

- Active control of locally aggregated resources enables them to be used for transmission constraint management.
- Active control allows for the capture of maximum economic value in the electricity market place.
- Active control enables system reliability value such as peak demand management.

MATRIX ENERGY SOLUTIONS

ENABLING COMMUNITIES TO SUSTAINABLE ENERGY

CONTACT: MIKE MICHAUD 651-380-3522 MMICHAUD@HBCI.COM